Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Bing Yan

Department of Chemistry, Lishui College, 323000 Lishui, ZheJiang, People's Republic of China

Correspondence e-mail: zjls05@56.com

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.051 wR factor = 0.148 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[2,6-bis(2-pyridylamino)pyridine]nickel(II) dinitrate

In the title complex, $[Ni(C_{15}H_{13}N_5)_2](NO_3)_2$, the Ni^{II} ion is located on a twofold axis and is chelated by two tridentate 2,6-bis(2-pyridylamino)pyridine ligands in an octahedral geometry.

Received 11 September 2006 Accepted 21 November 2006

Comment

Transition metal complexes with polypyridylamine ligands have aroused great interest because of their diverse structures and special optical and electromagnetic properties (Xu *et al.*, 2004). The tripyridyldiamine (tpdaH₂) ligand usually exhibits donor and acceptor properties and can be used as a chelating ligand (Jing *et al.*, 2000). A series of polynuclear metal chain complexes has been successfully synthesized and characterized (Sheu *et al.*, 1996; Shieh *et al.*, 1997; Chang *et al.*, 1999). In our current work, we originally attempted to synthesize a complex featuring Ni metal chains by reaction of the Ni^{II} ion with tripyridyldiamine (tpdaH₂); however, the only product obtained was the mononuclear Ni title complex, (I). We report here its synthesis and crystal structure.

The crystal structure of (I) consists of Ni^{II} complex cations and nitrate anions (Fig. 1). The Ni^{II} ion is located on a twofold axis and is chelated by two tpdaH₂ ligands in an octahedral geometry, coordinated by six N atoms from two tpdaH₂ ligands. The tpdaH₂ ligands are coordinated meridionally, with the peripheral N1 and N5 atoms in *trans* positions and with N3 *trans* to its symmetry-equivalent. The coordination bond lengths and angles at the Ni^{II} atom are given in Table 1.

In (I), the two N atoms of both NH groups of the $tpdaH_2$ ligands and O atoms of the nitrate anions are linked together by classical N-H···O hydrogen bonds (Table 2), which stabilize the crystal structure. The hydrogen bonds link the ions into an infinite two-dimensional network (Fig. 2).

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids; H atoms are indicated only by the C-H bonds as thin lines. Atoms N1A, N3A, N5A and all other unlabelled atoms have the symmetry code $(-x, y, \frac{1}{2} - z)$.

Figure 2

The packing of (I), viewed along the a axis, with hydrogen bonds shown as dashed lines.

Experimental

Tripyridyldiamine (0.08 g), NiCl₂ (0.18 g) and NaNO₃ (0.25 g) were added to a flask and stirred vigorously for 30 min in dry methanol (20 ml). The mixture was then transferred to a Teflon reactor and kept at 383 K for 7 d. Single crystals suitable for X-ray diffraction analysis were obtained.

Crystal data

[Ni(C ₁₅ H ₁₃ N ₅) ₂](NO ₃) ₂	
$M_r = 709.34$	
Monoclinic, $P2/c$	
$a = 8.2138 (12) \text{ Å}_{-}$	
b = 11.2601 (16) Å	
c = 16.790 (2) Å	
$\beta = 93.277 \ (2)^{\circ}$	
V = 1550.4 (4) Å ³	

Data collection

Bruker APEX-II area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.795, T_{\max} = 0.918$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ wR(F²) = 0.148 S = 1.002759 reflections 222 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Ni1-N3	2.073 (3)	Ni1-N1	2.083 (3)
Ni1-N5	2.083 (3)		
N3-Ni1-N3 ⁱ	179.33 (14)	N3-Ni1-N1 ⁱ	93.00 (10)
N3-Ni1-N5 ⁱ	92.18 (11)	N5-Ni1-N1 ⁱ	88.50 (11)
N3-Ni1-N5	87.35 (11)	N3-Ni1-N1	87.47 (10)
N3 ⁱ -Ni1-N5	92.18 (10)	N5-Ni1-N1	174.62 (10)
N5 ⁱ -Ni1-N5	93.18 (15)	N1-Ni1-N1 ⁱ	90.30 (15)

Z = 2

 $D_x = 1.520 \text{ Mg m}^{-3}$

7719 measured reflections

2759 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0783P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 1.716P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.93 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

2318 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.69 \text{ mm}^{-1}$

T = 296 (2) K

Block, green $0.35 \times 0.14 \times 0.13 \text{ mm}$

 $R_{\rm int} = 0.027$

 $\theta_{\rm max} = 25.1^{\circ}$

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Table 2		
Hydrogen-bond geometry	(Å,	°).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$N2-H2A\cdotsO1$ $N4-H4A\cdotsO3^{i}$ $N4-H4A\cdotsO2^{i}$	0.86 0.86 0.86	2.12 2.34 2.40	2.911 (4) 3.170 (6) 3.109 (5)	153 163 140

Symmetry code: (i) x, y - 1, z.

H atoms were positioned geometrically and treated as riding on their parent atoms, with C-H = 0.93, N-H = 0.86 Å and $U_{iso}(H)$ = $1.2U_{eq}(C,N).$

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The author gratefully acknowledges financial support by the Youth Foundation of Lishui College, China (No. QN05004).

References

Bruker (1998). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Version 1.22. Bruker AXS Inc., Madison, Wisconsin, USA.

Chang, H.-C., Li, J.-T., Wang, C.-C., Lin, T.-W., Lee, H.-C., Lee, G.-H. & Peng, S.-M. (1999). *Eur. J. Inorg. Chem.* pp. 1243–1251.

Jing, B.-W., Wu, T., Zhang, M.-W. & Shen, T. (2000). Chem. J. Chin. Univ. 21, 395-400.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Sheu, J. T., Liu, T. W. & Peng, S. M. (1996). Chem. Commun. pp. 315-316.
- Shieh, S.-J., Chou, C.-C., Lee, G.-H., Wang, C.-C. & Peng, S.-M. (1997). Angew. Chem. Int. Ed. Engl. 36, 56–59.
- Xu, C., Qiao, H.-B., Mao, H.-Y., Zhang, H.-Y., Wu, Q.-A., Liu, H.-L. & Zhu, Y. (2004). J. Zheng Zhou Univ. 36, 67–70.